Domain Adaptation of Echocardiography Segmentation Via Reinforcement Learning

发布于 2024-06-27  5 次阅读


AI 摘要

这篇文章探讨了深度学习分割模型在医学影像领域的迁移性挑战,特别是在目标域缺乏足够标注数据以进行有效微调的情况下。现有的域自适应方法提出了缓解这一问题的策略,但这些方法并未明确地结合人工验证的分割先验,从而损害了模型产生解剖合理的分割的潜力。文章介绍了RL4Seg,这是一个创新的强化学习框架,它减少了目标域中大量专家标注数据的需求,并消除了漫长的人工审查过程。在一个包含10,000个未经标注的2D超声心动图像的目标数据集上,RL4Seg不仅在准确度上优于现有的领先域自适应方法,而且在目标领域的220个专家验证的子集上实现了99%的解剖有效性。此外,该框架的奖励网络提供了与专门的先进不确定性方法相当的不确定性估计,表明了RL4Seg在克服医学图像分割领域自适应挑战中的实用性和有效性。

[PDF] [Site] [Kimi]

Performance of deep learning segmentation models is significantly challenged in its transferability across different medical imaging domains, particularly when aiming to adapt these models to a target domain with insufficient annotated data for effective fine-tuning. While existing domain adaptation (DA) methods propose strategies to alleviate this problem, these methods do not explicitly incorporate human-verified segmentation priors, compromising the potential of a model to produce anatomically plausible segmentations. We introduce RL4Seg, an innovative reinforcement learning framework that reduces the need to otherwise incorporate large expertly annotated datasets in the target domain, and eliminates the need for lengthy manual human review. Using a target dataset of 10,000 unannotated 2D echocardiographic images, RL4Seg not only outperforms existing state-of-the-art DA methods in accuracy but also achieves 99% anatomical validity on a subset of 220 expert-validated subjects from the target domain. Furthermore, our framework's reward network offers uncertainty estimates comparable with dedicated state-of-the-art uncertainty methods, demonstrating the utility and effectiveness of RL4Seg in overcoming domain adaptation challenges in medical image segmentation.

Hello
最后更新于 2024-08-02